tests.system.google.cloud.ml_engine.example_mlengine

Google ML Engine 服务的 Airflow DAG 示例。

属性

PROJECT_ID

ENV_ID

DAG_ID

REGION

PACKAGE_DISPLAY_NAME

MODEL_DISPLAY_NAME

JOB_DISPLAY_NAME

RESOURCE_DATA_BUCKET

CUSTOM_PYTHON_GCS_BUCKET_NAME

BQ_SOURCE

TABULAR_DATASET

REPLICA_COUNT

MACHINE_TYPE

ACCELERATOR_TYPE

ACCELERATOR_COUNT

TRAINING_FRACTION_SPLIT

TEST_FRACTION_SPLIT

VALIDATION_FRACTION_SPLIT

PYTHON_PACKAGE_GCS_URI

PYTHON_MODULE_NAME

TRAIN_IMAGE

DEPLOY_IMAGE

create_bucket

test_run

模块内容

tests.system.google.cloud.ml_engine.example_mlengine.PROJECT_ID[源]
tests.system.google.cloud.ml_engine.example_mlengine.ENV_ID[源]
tests.system.google.cloud.ml_engine.example_mlengine.DAG_ID = 'gcp_mlengine'[源]
tests.system.google.cloud.ml_engine.example_mlengine.REGION = 'us-central1'[源]
tests.system.google.cloud.ml_engine.example_mlengine.PACKAGE_DISPLAY_NAME = ''[源]
tests.system.google.cloud.ml_engine.example_mlengine.MODEL_DISPLAY_NAME = ''[源]
tests.system.google.cloud.ml_engine.example_mlengine.JOB_DISPLAY_NAME = ''[源]
tests.system.google.cloud.ml_engine.example_mlengine.RESOURCE_DATA_BUCKET = 'airflow-system-tests-resources'[源]
tests.system.google.cloud.ml_engine.example_mlengine.CUSTOM_PYTHON_GCS_BUCKET_NAME = ''[源]
tests.system.google.cloud.ml_engine.example_mlengine.BQ_SOURCE = 'bq://bigquery-public-data.ml_datasets.penguins'[源]
tests.system.google.cloud.ml_engine.example_mlengine.TABULAR_DATASET[源]
tests.system.google.cloud.ml_engine.example_mlengine.REPLICA_COUNT = 1[源]
tests.system.google.cloud.ml_engine.example_mlengine.MACHINE_TYPE = 'n1-standard-4'[源]
tests.system.google.cloud.ml_engine.example_mlengine.ACCELERATOR_TYPE = 'ACCELERATOR_TYPE_UNSPECIFIED'[源]
tests.system.google.cloud.ml_engine.example_mlengine.ACCELERATOR_COUNT = 0[源]
tests.system.google.cloud.ml_engine.example_mlengine.TRAINING_FRACTION_SPLIT = 0.7[源]
tests.system.google.cloud.ml_engine.example_mlengine.TEST_FRACTION_SPLIT = 0.15[源]
tests.system.google.cloud.ml_engine.example_mlengine.VALIDATION_FRACTION_SPLIT = 0.15[源]
tests.system.google.cloud.ml_engine.example_mlengine.PYTHON_PACKAGE_GCS_URI = 'gs:///vertex-ai/penguins_trainer_script-0.1.zip'[源]
tests.system.google.cloud.ml_engine.example_mlengine.PYTHON_MODULE_NAME = 'penguins_trainer_script.task'[源]
tests.system.google.cloud.ml_engine.example_mlengine.TRAIN_IMAGE = 'us-docker.pkg.dev/vertex-ai/training/tf-cpu.2-8:latest'[源]
tests.system.google.cloud.ml_engine.example_mlengine.DEPLOY_IMAGE = 'us-docker.pkg.dev/vertex-ai/prediction/tf2-cpu.2-8:latest'[源]
tests.system.google.cloud.ml_engine.example_mlengine.create_bucket[源]
tests.system.google.cloud.ml_engine.example_mlengine.test_run[源]

此条目有帮助吗?