Azure Data Factory 操作符

Azure Data Factory 是 Azure 的云 ETL 服务,用于横向扩展的无服务器数据集成和数据转换。它提供一个无需代码的 UI,用于直观创作以及单窗格监控和管理。

AzureDataFactoryRunPipelineOperator

使用 AzureDataFactoryRunPipelineOperator 在数据工厂中执行管道。默认情况下,操作符会定期检查已执行管道的状态,并在状态为“成功”时终止。通过将 wait_for_termination 设置为 False,可以禁用此功能以实现异步等待——通常与 AzureDataFactoryPipelineRunStatusSensor 配合使用。

下面是使用此操作符执行 Azure Data Factory 管道的示例。

tests/system/microsoft/azure/example_adf_run_pipeline.py

    run_pipeline1 = AzureDataFactoryRunPipelineOperator(
        task_id="run_pipeline1",
        pipeline_name="pipeline1",
        parameters={"myParam": "value"},
    )

下面是使用此操作符执行 Azure Data Factory 管道并设置 deferrable 标志的示例,以便管道运行状态的轮询发生在 Airflow Triggerer 上。

tests/system/microsoft/azure/example_adf_run_pipeline.py

run_pipeline3 = AzureDataFactoryRunPipelineOperator(
    task_id="run_pipeline3",
    pipeline_name="pipeline1",
    parameters={"myParam": "value"},
    deferrable=True,
)

这里是使用此操作符执行管道但与 AzureDataFactoryPipelineRunStatusSensor 配合执行异步等待的另一个示例。

tests/system/microsoft/azure/example_adf_run_pipeline.py

    run_pipeline2 = AzureDataFactoryRunPipelineOperator(
        task_id="run_pipeline2",
        pipeline_name="pipeline2",
        wait_for_termination=False,
    )

    pipeline_run_sensor = AzureDataFactoryPipelineRunStatusSensor(
        task_id="pipeline_run_sensor",
        run_id=cast("str", XComArg(run_pipeline2, key="run_id")),
    )

    # Performs polling on the Airflow Triggerer thus freeing up resources on Airflow Worker
    pipeline_run_sensor_deferred = AzureDataFactoryPipelineRunStatusSensor(
        task_id="pipeline_run_sensor_defered",
        run_id=cast("str", XComArg(run_pipeline2, key="run_id")),
        deferrable=True,
    )

    pipeline_run_async_sensor = AzureDataFactoryPipelineRunStatusSensor(
        task_id="pipeline_run_async_sensor",
        run_id=cast("str", XComArg(run_pipeline2, key="run_id")),
        deferrable=True,
    )

此外,如果您想在 sensor 运行时释放工作槽,可以在 AzureDataFactoryPipelineRunStatusSensor 中使用 deferrable 模式。

tests/system/microsoft/azure/example_adf_run_pipeline.py

    run_pipeline2 = AzureDataFactoryRunPipelineOperator(
        task_id="run_pipeline2",
        pipeline_name="pipeline2",
        wait_for_termination=False,
    )

    pipeline_run_sensor = AzureDataFactoryPipelineRunStatusSensor(
        task_id="pipeline_run_sensor",
        run_id=cast("str", XComArg(run_pipeline2, key="run_id")),
    )

    # Performs polling on the Airflow Triggerer thus freeing up resources on Airflow Worker
    pipeline_run_sensor_deferred = AzureDataFactoryPipelineRunStatusSensor(
        task_id="pipeline_run_sensor_defered",
        run_id=cast("str", XComArg(run_pipeline2, key="run_id")),
        deferrable=True,
    )

    pipeline_run_async_sensor = AzureDataFactoryPipelineRunStatusSensor(
        task_id="pipeline_run_async_sensor",
        run_id=cast("str", XComArg(run_pipeline2, key="run_id")),
        deferrable=True,
    )

异步轮询数据工厂管道运行状态

使用 AzureDataFactoryPipelineRunStatusAsyncSensor (deferrable 版本) 异步定期检索数据工厂管道运行状态。此 sensor 会释放工作槽,因为作业状态的轮询发生在 Airflow triggerer 上,从而实现 Airflow 内部资源的有效利用。

tests/system/microsoft/azure/example_adf_run_pipeline.py

run_pipeline2 = AzureDataFactoryRunPipelineOperator(
    task_id="run_pipeline2",
    pipeline_name="pipeline2",
    wait_for_termination=False,
)

pipeline_run_sensor = AzureDataFactoryPipelineRunStatusSensor(
    task_id="pipeline_run_sensor",
    run_id=cast("str", XComArg(run_pipeline2, key="run_id")),
)

# Performs polling on the Airflow Triggerer thus freeing up resources on Airflow Worker
pipeline_run_sensor_deferred = AzureDataFactoryPipelineRunStatusSensor(
    task_id="pipeline_run_sensor_defered",
    run_id=cast("str", XComArg(run_pipeline2, key="run_id")),
    deferrable=True,
)

pipeline_run_async_sensor = AzureDataFactoryPipelineRunStatusSensor(
    task_id="pipeline_run_async_sensor",
    run_id=cast("str", XComArg(run_pipeline2, key="run_id")),
    deferrable=True,
)

参考

欲了解更多信息,请参考 Microsoft 文档

此条目有帮助吗?