Azure Data Factory 操作符¶
Azure Data Factory 是 Azure 的云 ETL 服务,用于横向扩展的无服务器数据集成和数据转换。它提供了一个无代码 UI,用于直观的创作和单窗格的监控和管理。
AzureDataFactoryRunPipelineOperator¶
使用 AzureDataFactoryRunPipelineOperator
在数据工厂内执行管道。默认情况下,操作符会定期检查已执行管道的状态,以“成功”状态终止。可以通过将 wait_for_termination
设置为 False 来禁用此功能以进行异步等待 — 通常与 AzureDataFactoryPipelineRunStatusSensor
一起使用。
以下是如何使用此操作符执行 Azure Data Factory 管道的示例。
run_pipeline1 = AzureDataFactoryRunPipelineOperator( task_id="run_pipeline1", pipeline_name="pipeline1", parameters={"myParam": "value"}, )
以下是如何使用此操作符执行带有可延迟标志的 Azure Data Factory 管道的示例,以便在 Airflow Triggerer 上进行管道运行状态的轮询。
run_pipeline3 = AzureDataFactoryRunPipelineOperator( task_id="run_pipeline3", pipeline_name="pipeline1", parameters={"myParam": "value"}, deferrable=True, )
这是使用此操作符执行管道的另一个示例,但与 AzureDataFactoryPipelineRunStatusSensor
结合使用以执行异步等待。
run_pipeline2 = AzureDataFactoryRunPipelineOperator( task_id="run_pipeline2", pipeline_name="pipeline2", wait_for_termination=False, ) pipeline_run_sensor = AzureDataFactoryPipelineRunStatusSensor( task_id="pipeline_run_sensor", run_id=cast(str, XComArg(run_pipeline2, key="run_id")), ) # Performs polling on the Airflow Triggerer thus freeing up resources on Airflow Worker pipeline_run_sensor_deferred = AzureDataFactoryPipelineRunStatusSensor( task_id="pipeline_run_sensor_defered", run_id=cast(str, XComArg(run_pipeline2, key="run_id")), deferrable=True, ) pipeline_run_async_sensor = AzureDataFactoryPipelineRunStatusSensor( task_id="pipeline_run_async_sensor", run_id=cast(str, XComArg(run_pipeline2, key="run_id")), deferrable=True, )
如果您希望在传感器运行时释放工作槽,您也可以在 AzureDataFactoryPipelineRunStatusSensor
中使用可延迟模式。
run_pipeline2 = AzureDataFactoryRunPipelineOperator( task_id="run_pipeline2", pipeline_name="pipeline2", wait_for_termination=False, ) pipeline_run_sensor = AzureDataFactoryPipelineRunStatusSensor( task_id="pipeline_run_sensor", run_id=cast(str, XComArg(run_pipeline2, key="run_id")), ) # Performs polling on the Airflow Triggerer thus freeing up resources on Airflow Worker pipeline_run_sensor_deferred = AzureDataFactoryPipelineRunStatusSensor( task_id="pipeline_run_sensor_defered", run_id=cast(str, XComArg(run_pipeline2, key="run_id")), deferrable=True, ) pipeline_run_async_sensor = AzureDataFactoryPipelineRunStatusSensor( task_id="pipeline_run_async_sensor", run_id=cast(str, XComArg(run_pipeline2, key="run_id")), deferrable=True, )
异步轮询数据工厂管道运行状态¶
使用 AzureDataFactoryPipelineRunStatusAsyncSensor
(可延迟版本)异步定期检索数据工厂管道运行的状态。由于作业状态的轮询发生在 Airflow 触发器上,此传感器将释放工作槽,从而有效利用 Airflow 内的资源。
run_pipeline2 = AzureDataFactoryRunPipelineOperator(
task_id="run_pipeline2",
pipeline_name="pipeline2",
wait_for_termination=False,
)
pipeline_run_sensor = AzureDataFactoryPipelineRunStatusSensor(
task_id="pipeline_run_sensor",
run_id=cast(str, XComArg(run_pipeline2, key="run_id")),
)
# Performs polling on the Airflow Triggerer thus freeing up resources on Airflow Worker
pipeline_run_sensor_deferred = AzureDataFactoryPipelineRunStatusSensor(
task_id="pipeline_run_sensor_defered",
run_id=cast(str, XComArg(run_pipeline2, key="run_id")),
deferrable=True,
)
pipeline_run_async_sensor = AzureDataFactoryPipelineRunStatusSensor(
task_id="pipeline_run_async_sensor",
run_id=cast(str, XComArg(run_pipeline2, key="run_id")),
deferrable=True,
)